Variable selection and model choice in structured survival models
نویسندگان
چکیده
منابع مشابه
Variable Selection and Model Choice in Structured Survival Models
In many situations, medical applications ask for flexible survival models that allow to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection is desired. In particular, it has to be decided which covariates should be assigned timevar...
متن کاملVariable selection and model choice in geoadditive regression models.
SUMMARY Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable...
متن کاملStructured Variable Selection and Estimation
In linear regression problems with related predictors, it is desirable to do variable selection and estimation by maintaining the hierarchical or structural relationships among predictors. In this paper, we propose nonnegative garrote methods that can naturally incorporate such relationships defined through effect heredity principles or marginality principles. We show that the methods are very ...
متن کاملspikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R
The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respe...
متن کاملVariable selection in discrete survival models including heterogeneity.
Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2012
ISSN: 0943-4062,1613-9658
DOI: 10.1007/s00180-012-0337-x